kpreid: (Default)
Kevin Reid ([personal profile] kpreid) wrote2011-02-08 12:17 pm
Entry tags:

A simple rule for the simple sines

It is an often-used fact (in examples of elementary trigonometry and problems that involve it) that the sines of certain simple angles have simple expressions themselves. Specifically,

sin(0)=0
sin(π/6)=sin(30°)=1/2
sin(π/4)=sin(45°)=√(2)/2
sin(π/3)=sin(60°)=√(3)/2
sin(π/2)=sin(90°)=1

Furthermore, these statements about angles in the first quadrant can be reflected to handle similar common angles in the other three quadrants, and cosines. There is a common diagram illustrating this, considering sine and cosine as the coordinates of points on the unit circle.

When attempting to memorize these facts as one is expected to, I observed a pattern: each of the values may be expressed in the form √(x)/2.

sin(0)=√(0)/2
sin(π/6)=sin(30°)=√(1)/2
sin(π/4)=sin(45°)=√(2)/2
sin(π/3)=sin(60°)=√(3)/2
sin(π/2)=sin(90°)=√(4)/2

I found this pattern to be quite useful. It does not, however, explain why those particular angles (quarters, sixths, eighths, and twelfths — but not tenths! — of circles) form this pattern of sines.

[identity profile] kpreid.livejournal.com 2012-02-06 05:37 pm (UTC)(link)
Update: I've posted my keyboard layout. (https://github.com/kpreid/keyboard-layout) In the event that GitHub goes away in the future, please look for wherever I'm publishing my repositories.